本书是两册泛函分析教材中的下册,作为数学专业研究生公共基础课教材,与本书上册共同构成完整的泛函分析教学体系。本书延续了上册的编写理念,注重理论来源与背景的阐述,深入探讨泛函分析与数学物理、偏微分方程及随机过程等领域的密切联系。全书共分四章:Banach代数、无界算子、算子半群、无穷维空间上的测度论。本书的主要特点是侧重
推理是由已知的判断推出新判断的过程,是获得间接知识、解决和论证问题的重要手段。数学推理是利用数学规律和规则得出结论的抽象过程,数学课程是培养推理能力的重要载体。在公安工作中,推理能力是进行案件侦查、审理,提高办案效率、质量所必需的重要能力。公安院校是公安教育的主阵地,公安院校应该着力培养掌握公安工作所需素质和技能的人才
?高等数学(第2版)?是编者团队根据多年的教育教学的实践积累,按照新时代教材改革的要求,针对目前高校非数学类理工科及管理类相关专业学生的需要,结合多年的教学经验和体会,对高等数学的相关内容进行合理的取舍和编排,并融入相关的教学研究与实践成果编写而成的.本书分上下两册.上册共有七章,内容包括:函数、极限、连续,导数与微分
"本教材以学生可持续发展为目标,内容编排兼顾高等数学、专升本考试大纲,参照普高数学课标。强化数理逻辑、函数、三角函数、导数、空间向量等知识,构建学科体系。同时融入职教、专升本政策等生涯规划专题,助力中高职衔接。 本教材设五大栏目:情境创设联系生活与专业问题;知识探究引导知识形成;应用举例讲解典型数学题,以应用问题凸显
《大学数学解题指南》是一本专为考研数学设计的综合性辅导用书,全面覆盖考研数学重要考点、重点题型,给出相应的题型对考点进行具体阐述,并适当配以注释和批注,说明考试中常考的方式和易出现的错误,最后给出习题供考生加强对知识点的理解和对做题技巧的把握。本书内容较为全面,适合想要提前备战考研的学生使用,兼顾不同科目考生的差异化需
《线性代数9讲》由著名辅导名师张宇领衔编写,本书创新采用乐"模块化强化教学法"的科学备考方案,将线性代数的考研内容按专题梳理划分为9个核心模块,并独创特征值应用场景矩阵。每章节的内容中,【思维导图】厘清知识脉络,【考点精讲】汇总高频失误案例。本书还特别配备了强化阶段题库,基础巩固题、综合提升题、压轴突破题按比例科学配比
"本书分为上、下两册,上册内容包括极限与连续、导数与微分、微分中值定理与导数的应用、原函数与不定积分、定积分、定积分的应用和微分方程。全书注重讲述高等数学的思想和方法,重视概念与理论的阐述和分析,内容阐述力求简单明了、深入浅出。例题精心选择,题型丰富,由易到难,帮助读者领会和理解数学概念,掌握思想方法。同时,配以丰富的
本书共分为5章,主要概括如下:第1章介绍全书的基本概念和符号,包括半群、自由半群、本原字、代数码的运算。第2章介绍自动机基本理论。第1节介绍自动机的定义和表达方式、可识别语言等概念,以及著名的Pumping引理。第2节介绍语言的正则性和可识别性等价。第3节介绍语言的可识别性和有理性等价,进而得到语言的正则性、可识别性和
本书包含了集合论与图论课程需涵盖的概念、理论、方法和应用,主要包括两部分:集合论与图论。集合论部分主要包括集合及其运算、映射及其合成、关系及其运算、无穷集合及其基数;图论主要包括图的一些基本概念、一些特殊的图、树及其性质、割点和桥、连通度和匹配、平面图和图的着色、有向图等。