魔方是一项广受欢迎的益智游戏,但很多人往往因为不得其法而打退堂鼓,书中介绍了可以帮助读者快速入门并进阶的方法,致力于帮助读者玩通魔方。全书分为6章,前4章主要介绍了还原三阶魔方的基础手法,以及还原三阶魔方的底层、中层和顶层的具体步骤,第5章和第6章则分别介绍了还原二阶和四阶魔方的详细步骤。采用分步骤、分层次的讲解形式介
《线性代数习题详解与提高》是北京建筑大学数学系编写的《线性代数》(2019版)的配套教材。本书对《线性代数》各章知识进行了梳理和总结,包括知识脉络图、知识要点和学习要求;对各章的习题和复习题做了详尽的解答;同时,为满足学有余力的读者的需要,还补充了“常见题型”部分,其中不乏考研真题,这部分题目在难度和解题技巧方面都有进
2022年度国家出版基金项目《丢番图逼近与超越数》中的一册。给出数的几何的基本结果和一些数论应用。基本结果包括凸体和格的性质,Minkowski第一和第二凸体定理,Minkowski-Hlawka容许格定理,Mahler列紧性定理,二次型的约化理论及堆砌与覆盖等;数论应用有四平方和定理及Hurwitz逼近定理等的证明。
2022年度国家出版基金项目《丢番图逼近与超越数》中的一册。着重讲述超越数论中代数无关性理论的一些重要结果,包括Nesterenko方法及其对于Ramenujan函数和Mahler函数的应用、零点重数估计、π和eπ的代数无关性、Philippon代数无关性判别法则等;还给出Liouville数、广义Mahler级数以及
2022年度国家出版基金项目《丢番图逼近与超越数》中的一册。全面地讲述了超越数论的基本结果和主要方法,包括Hilbert第七问题的解,指数函数、对数函数、椭圆函数、E函数、Mahler型函数等重要函数类的超越性质,以及数的分类和超越性度量。通过这些基本结果给出了Gelfond-Schneider方法、Baker方法、S
2022年度国家出版基金项目《丢番图逼近与超越数》中的一册。介绍点集偏差的基本概念和主要性质、低偏差点集的构造、偏差上界和下界估计的常用方法、点集偏差的精确计算公式、点集离差的基本结果,以及点集偏差和离差在拟MonteCarlo方法中的应用,如具有数论网点的多维求积公式的构造、多维数值积分的格法则、函数最大值近似计算的
2022年度国家出版基金项目《丢番图逼近与超越数》中的一册。论述了丢番图逼近的基本理论和方法,如实数的有理逼近的各种问题,代数数有理逼近的Schmidt定理,度量理论,一致分布,多p-adic结果及数的几何基本定理,等等。
本书分为基础篇、强化篇两大部分,每章分为若干小节,每小节从考试内容、考试要求,知识结构网络图等角度展开,侧重于单一知识点的精细化讲解和把握,目的是使学生打牢基础,加深对知识点的理解,为后面的强化篇做准备。强化篇每章从考试题型的角度,综合运用知识,考察知识点间的综合灵活运用,以期对前后知识点融汇贯通,举一反三,以达到应试
线性代数是代数学的一个分支,主要处理线性关系问题。本书内容包括行列式、矩阵、矩阵的初等变换与线性方程组、向量组的线性相关性、特征值与特征向量及二次型共6章。全书共有三个附录,其中附录1介绍了线性代数中常用的MATLAB软件命令及用法,附录2精选了典型的应用案例,附录3给出了习题答案或提示。本书通过二维码链接介绍了相关学
本书是针对线性代数课程的特点,根据高等学校应用技术型本科教育系列规划教材的要求,在历年主讲该课程使用的自编讲义的基础上,并广泛吸取国内外一些相关教材的优点编写而成的。本书共6章,主要包括MATLAB基本操作、矩阵、行列式、向量组与向量空间、矩阵的特征值与二次型、MATLAB线性代数应用实例。本书体系完整、结构严谨、由浅