Melt Electrospinning: A Green Method to Produce Superfine Fi
定 价:298 元
熔体静电纺丝是纳米纤维制造的新兴技术之一,其的特点是不用添加溶剂,具有无毒、环保、安全、经济等方面的优势。在生物医学、药物控释、组织工程等方向具有广阔的应用前景。本书基于作者多年的原创科研成果,对熔体静电纺丝技术做了全面的总结,共四部分。部分介绍了熔体静电纺丝的发明,包括离心熔体静电纺丝和向上熔体静电纺丝的独立发展,分别对两种方法的产率和纤维直径进行了优化。第二部分介绍了熔体的静电纺丝以及利用不同聚合物和自行设计的装置测试纤维性能的方法。第三部分介绍耗散粒子动力学模拟,这种模拟技术是模拟纺丝过程中分子链结构和取向的一种方法。第四部分介绍了离心熔体静电纺丝的原理、方法及改进措施。本书不仅适合静电纺丝研究的广大科研人员阅读,同时还可供燃料电池、锂电池、太阳能电池、水过滤、空气过滤、血液过滤、组织工程、载药缓释、癌症检测、介入治疗支架、人造血管、金属吸附等可能用到纳米纤维的广大领域的科技工作者﹑研究生、企业管理人员参考。
刘勇,博导,北京化工大学材料学院高分子纳米复合材料实验室负责人。主要从事高分子及纳米复合材料制备与应用等研究。在特种高性能塑料应用、橡胶制品性能提升、塑料产品配方及工艺开发、特种功能纤维成型、静电纺丝制备超细纤维、净化甲醛及PM2.5、燃料电池和太阳能电池器件制备、纳米纤维构筑生物医学器件等方面均有研究。迄今发表期刊文章113篇,已授权专利53项,出版专著2部(其中英文专著1部)。是Advanced Science,RSC Advances,高等学校化学学报等30多种中外期刊审稿人。曾获国家科技进步二等奖1项,省部级技术发明二等奖1项和专利奖1项,北京市科学技术三等奖1项。席瑞思,新加坡国立大学纳米纤维及纳米技术研究中心主任,静电纺丝技术制备纳米纤维领域世界公认的领导者和开拓者,其对纳米纤维及应用于生物医学工程、太阳能收集、水处理方面的研究居于世界前列。当选为英国皇家工程院院士、新加坡工程院院士、印度国家工程院院士以及东盟工程技术院院士。
About the authors ixPreface xiiiAcknowledgments xv1. Development of melt electrospinning: the past,present,and future1.1 Electrospinning 11.2 The working principle of electrospinning 21.3 Types of electrospinning 21.4 Solution electrospinning 21.5 Melt electrospinning 31.6 The scope of this book 4References 42. The device of melt electrospinning2.1 Introduction 72.2 Conventional melt electrospinning devices 72.3 Laser heating melt electrospinning devices 82.4 Screw extrusion melting electrostatic spinning devices 92.5 Electromagnetic spinning devices for vibration 102.6 Air melt electrospinning devices 122.7 Coaxial melt electrospinning devices 122.8 Upward melt electrospinning devices 132.9 Centrifugal melt electrospinning devices 162.10 Conclusion 17References 183. Formation of fibrous structure and influential factors in melt electrospinning3.1 Polycaprolactone 223.1.1 Experiment 233.1.2 Results and discussion 233.2 Polylactic acid (PLA) 243.2.1 The diameter of PLLA fiber under a pulsed electric field 283.2.2 Thermal degradation of PLA fiber 313.2.3 The relative molecular mass of PLA fibers 393.2.4 Orientation and crystallinity of the PLA fiber 403.3 Phenolic resin 533.3.1 Materials and equipment 543.3.2 Orthogonal experimental arrangements 553.3.3 Optimal spinning conditions 573.3.4 Fiber heat resistance and crystallinity 593.3.5 Session conclusion 633.4 Polypropylene (PP) 643.4.1 Equipment 653.4.2 Effect of collecting plate on spinning electric field 723.4.3 Effect of upper plate on spinning electric field 733.4.4 Effect of the hyperbranched polymers 753.4.5 Effect of polar additive on PP 793.5 Conclusion 84References 84Further reading 904. Melt electrospinning in a parallel electric field4.1 Introduction 914.2 Method and experiments 924.2.1 Experimental material 924.2.2 Parallel electrospinning equipment 934.2.3 Finite element modeling 944.2.4 Theoretical analysis 944.3 Results and discussion 964.3.1 Experimental electrospinning in a parallel electric field 964.3.2 Finite element simulation of the electrospinning process in a parallel electric field 974.4 Conclusion 100References 1005. Dissipative particle dynamics simulation on melt electrospinning5.1 Introduction 1035.2 Differential scanning calorimetry simulation under different electric fields 1075.2.1 Electrostatic field 1075.2.2 Pulsed electric field 1115.3 Conclusion 119References 1196. Experimental study on centrifugal melt electrospinning6.1 Overview of centrifugal melt electrospinning 1236.2 Research progress of centrifugal melt electrospinning at home and abroad 1256.3 The significance of centrifugal melt electrospinning devices 1286.4 Experimental study on centrifugal melt electrospinning 1296.4.1 Experimental section 1296.4.2 Characterization method 1316.4.3 Results and discussion 1326.5 Innovative design of centrifugal melt electrospinning devices 1406.6 Conclusion 141References 1427. Dissipative particle dynamics simulations of centrifugal melt electrospinning7.1 Introduction 1457.2 The dissipative particle dynamics model in centrifugal melt electrospinning 1467.3 Different electric field simulation of centrifugal melt electrospinning 1487.3.1 Centrifugal melt electrospinning in an electrostatic field 1497.3.2 Centrifugal melt electrospinning in a pulsed electric field 1537.4 Conclusion 156References 1568. Three-dimensional (3D) printing based on controlled melt electrospinning in polymeric biomedical materials8.1 Introduction 1598.2 Basic principles of 3D printing based on electrospinning 1608.3 Different auxiliary electrode and dielectric plate collectors 1618.3.1 Setup for electrospinning with an electrostatic lens system 1638.3.2 Dielectric plate with sharp-pin electrode 1668.4 Patterned,tubular,and porous nanofiber 1668.5 Conclusion 168References 1689. Fiber membranes obtained by melt electrospinning for drug delivery9.1 Introduction 1739.2 Experimental 1759.2.1 Materials 1759.2.2 Processing of the blends 1759.2.3 Melt electrospinning 1759.3 Results and discussion 1779.3.1 Fiber membrane morphology 1779.3.2 Fourier transformed infrared spectroscopy 1799.3.3 Differential scanning calorimetry 1819.3.4 X-ray diffraction 1839.3.5 Electron spin-resonance probe spectroscopy of polylactic acid (PLA)/polyhydroxybutyrate (PHB) electrospun mats 1849.3.6 Impact of diffusion upon controlled drug release 1879.4 Conclusion 191References 191Index 197