在单复变几何函数理论的研究中,如何构造解析函数类及研究它的几何性质是1常热门的研究课题。而在几何性质的研究中,对于各种解析函数类的Hankel行列式和Toeplitz行列式研究具有重要的作用。本书主要研究不同解析函数类的二阶、三阶、四阶、五阶Hankel行列式和(哈密顿)Toeplitz行列式,得到其上界及下界估计。所
本习题集是微积分课程的配套用书,主要分为三部分:作业题、历年期中及期末考试题、模拟题。习题集紧扣教学大纲的要求,作业以课本知识点对应的题型顺序编排,期中及期末试题、模拟题成套汇编。作业题的编写注重基础知识的巩固及基本能力的培养,为了练习基础知识的灵活应用,在每一章最后一节配以相应的综合题。期中及期末考试题的汇编给出了试
本书主要内容包括:复数与复变函数、解析函数、复变函数的积分、数项级数与幂级数、洛朗展开式与孤立奇点、留数理论及其应用、共形映射、傅里叶变换与拉普拉斯变换等内容。本书汇聚编者教学团队的讲授经验与课程改革成果,教材内容选取恰当、文字通俗易懂、阐述细致准确。本教材注重复变函数与数学分析或高等数学课程中相应内容的对比,既强化数
本书主要研究了混合方程和偏差自变数方程问题,提出和阐述了二阶偏微分混合问题的非局部、内部边值问题的单值可解性,以及在有限领域内带有偏差自变数的方程的经典边值问题。同时研究了带有不平滑线的类型变化混合方程的非局部边值问题,边界条件下带有不连续共轭条件和分数导数的问题,以及带有偏差自变数的二阶方程的经典边值问题,所获得的结
本书是在作者近些年对“数学分析”和“数学分析选讲”两门课程的一些想法的基础上写成的,即对数学分析概念、内容、方法的一个总结。本书对数学分析的各个知识点进行了概括,附录给出了近年来一些重点高校数学专业硕士研究生人学考试的部分试题,通过这些试题,读者可以进行相应知识点的检验。
本书是“索茉菲理论物理教程”的第六卷,主题是物理学中的偏微分方程。“索末菲理论物理教程”包括力学、变形介质力学、电动力学、光学、热力学与统计物理、物理学中的偏微分方程六卷,是作者给Muenchen大学和理工学院物理专业大三、大四学生讲课的手稿整理而成的。索末菲老师教书是物理数学融合在一起的,关键是他还能实验物理和理论物
本书主要内容包括复数与复变函数、解析函数、复变函数的积分、数项级数与幂级数、洛朗展式与孤立奇点、留数理论及其应用、共形映射、傅里叶变换与拉普拉斯变换等。本书借助犕犃犜犔犃犅等软件将复变函数的概念可视化,同时附有对复变函数论的发展具有奠基性贡献的数学名人简介。本书选取的例题比较丰富,由浅入深、易学易教,并适当增加了和数学
《拟度量空间分析:存在和逼近定理(俄文)》是一部版权引进的俄文原版泛函分析专著,中文书名或可译为《拟度量空间分析:存在和逼近定理》。《拟度量空间分析:存在和逼近定理(俄文)》的作者是亚历山大·格列什诺夫,俄罗斯人,物理和数学科学博士,俄罗斯科学院西伯利亚分院数学研究所高级研究员,新西伯利亚国立大学副教授,
本书以分数阶微分方程为研究对象,对其解析解的相关内容进行了详细而深入的研究。主要内容包括:绪论、分数阶微分方程的理论基础、分数阶积分与分数阶导数、分数阶偏微分方程、广义Hukuhara微分和模糊分数阶微积分、基于结构元的模糊分数阶微积分,共六章。
本书为数学分析的学习指导书,是丁彦恒、刘笑颖、吴刚编写的《数学分析讲义》第一、二、三卷的配套用书。主要内容除了经典的一元微积分、多元微积分、级数理论与含参积分之外,还包括拓扑空间的映射、流形及微分形式、流形上微分形式的积分、向量分析与场论、线性赋范空间中的微分学和傅里叶变换等。为了便于读者复习与自查,每一章(第16章除