《分析学教程.第4卷,傅里叶分析,常微分方程,变分法(英文)》是分析学课程著作的第四卷,在本卷中作者讨论了傅里叶分析、常微分方程和变分法的基础知识(一维情况下的),其中包括一些关于分析动力学的结果,即哈密顿力学。
本书共分为7章,第1章和第2章介绍了受控理论的基本概念和主要定理,以及中国学者对受控理论的一些推广,第3章和第4章介绍了受控理论在对称函数不等式中的应用,第5章、第6章和第7章分别介绍了受控理论在数列不等式,二元均值不等式和几何不等式中的应用. 本书适合中学生,数学教师及初等数学研究人员参考阅读.
微积分是迄今为止人类所发明的描述我们的宇宙的非常好的数学语言,没有之一,而本书就是关于这一语言的大学数学教程。《分析学教程.第1卷一元实变量函数的微积分分析学介绍(英文)》为英文影印,中文书名或可译为《分析学教程·第1卷,一元实变量函数的微积分分析学介绍》。《分析学教程.第1卷一元实变量函数的微积分分析学
本书内容:热带几何学是代数几何学的一个组合投影,为计算代数簇的不变量提供了新的多面体工具。它基于热带代数,其中两个数的和是它们的最小值、乘积是它们的和。这将多项式转化为分段线性函数,将其零点集转化为多面体复形。热带簇保留了其对应的经典簇的大量信息。热带几何学是21世纪以来发展迅速的一门年轻学科,在将自己确立为一个独立领
本书介绍了暑期学校的九个不同的讲座系列,涵盖了当前关注的一些主题。入门课程涵盖了映射类群和Teichmuller理论。高级课程涵盖了模空间的相交理论、多边形台球和模空间的动力学、映射类群的稳定上同调、Torelli群的结构和算术映射类群。
本书选取300余个国内外初等不等式的典型问题,以解析解题方法,并对部分问题加以拓展,不少例题都配有较大篇幅的注解。
"几何群论是指利用来自拓扑、几何、动力学和分析的工具研究离散群。这一领域发展非常迅速,本书对在这一发展中发挥了关键作用的各种主题进行了介绍和概述。本书包含了帕克城数学研究所关于几何群论课程的讲义。该研究所开设了由该领域的专家提供的一系列密集的短期课程,旨在向学生介绍令人兴奋的、最新的数学研究。这些讲座与其他地方的标准课
"Poincaré奖得主BarrySimon的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。第3部分讨论了点态极
本书收集了2019年至2021年在中国科学院数学与系统科学研究院晨兴数学中心和调和分析及其应用研究中心举办的“偏微分方程的分析方法”讨论班的部分邀请报告。本书共有7篇讲义,包括HajerBahouri教授等关于泡和波阵面分解方法,Rapha?lDanchin教授关于具有间断密度的非齐次不可压缩Navier-Stokes
"Poincaré奖得主BarrySimon的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。第2B部分全面介绍了