本书立足新时代教育发展需求,依据全国高等院校理工科数学基础课程的教学大纲和硕士研究生入学考试要求精心编撰,全书以线性方程组为脉络,以矩阵与线性变换为依托,深度融合代数与几何知识,巧妙嵌入人生智慧与代数实际应用案例,同时贯穿数学方法论,整合线性代数与其他多学科理论,构建起系统且富有深度的知识体系。全书共五章,涵盖行列式、
本书入选科学出版社精品项目,是作者根据自己在上海科技大学讲授线性代数课程的讲义整理而成的。作者试图以尽可能简单和具体的方式系统构建和展开线性代数的基本理论,循序渐进,并分层递进,既有理论,也有计算。易读性是本书追求的,叙述简洁则不是,甚至为了易读,重复叙述的情况也不时会发生。
本书共分八章。第一章为代数基础,介绍了学习本书所必需的预备知识。第二、三章介绍了有限域的基本性质,包括有限域的群结构、有限域的存在唯一性、迹、范数、基等内容。第四、五、六章介绍了有限域上的多项式,包括分圆多项式、线性化多项式、不可约多项式和置换多项式等,还给出了有限域上多项式的分解算法。第七章介绍了有限域上代数方程的求
本书是哈尔滨工业大学线性代数与空间解析几何教学团队编写《大学数学—线性代数与空间解析几何(第五版)》的配套作业集。作业集与教材章节相对应,涵盖了针对行列式、矩阵、几何向量、n维向量空间、线性方程组、特征值、特征向量及相似矩阵、线性空间与线性变换及二次型与二次曲面的习题。题型包括解答题、填空题、选择题和判断题。大部分解答
本书主要介绍图论的基本概念、理论和算法。涵盖图的概念与运算、树及其算法、最大流及其算法、遍历性及其算法、独立集及其算法、最大匹配及其算法、平面性及其算法、应用案例拓展等内容。每章配置了一定量的分层次、多题型的练习题。本书前两章为图与网络的基本概念及运算。自第三章始,每章节从实际问题出发,引出一个图论主题,建立相关概念和
本书是作者为帮助学生巩固线性代数的基本知识,使学生能做到举一反三,融汇贯通而编写。全书共4章,内容包括矩阵、向量空间、线性变换与二次型及综合测试题。前三章每章知识结构为基础知识导学(含简单思维导图,扫描二维码可查看完整思维导图)、典型例题解析、练习题分析、单元测试题。第4章为3套综合测试题,以帮助读者检验学习效果。文后
本书讨论矩阵分解、新型广义逆和偏序等相关问题。主要研究内容包括core-EP分解、EP-幂零分解和类极分解;WG逆、C-S逆、P-core逆和若干合成广义逆;core偏序、CL偏序、L*偏序、偏序不等式以及上述广义逆诱导的偏序和拟序;强core正交、C-S正交、弱群星矩阵等相关问题。
编码诞生于20世纪40年代末至50年代初,它利用代数、组合和数论等数学工具研究、构造纠错码,用于高效可靠地传输信息。编码很快发展成为数学与信息科学深度交叉融合的学科。本书介绍编码的基本内容,包括Hamming编码的原始创新思想、线性码、循环码、MacWilliams的两个定理、码的渐近性质。书中配备适量习题,可供读者学
本书主要讲述定义在有限群上的幂图及其相关图类(如增大幂图、简化幂图以及交换图等)的研究进展,是“十三五”科学技术专著丛书《有限群的幂图与Cayley图》的延续。第1章是综述部分,主要介绍了一些背景知识、预备知识以及主要结果。第2章介绍了有限群的(真)交幂图的相关知识。第3章和第4章分别介绍了群的(真)简化幂图与群的增大
修正微分李型代数包含修正微分算子和李型代数,修正罗巴李型代数包含修正罗巴算子和李型代数,二者的关系类似于高等数学中微分与积分的关系。其相关概念可追溯到Semenov-Tian-Shansky关于修正经典杨-巴克斯特方程的研究。近年来修正算子结构已经被推广到很多经典的代数结构中。本书为学术著作,以作者近五年在该方向的研究