建部贤弘(1664~1739)是日本近代最伟大的数学家之一。他作为德川幕府的直属武士,任八代将军德川吉宗的历学顾问。他创立的累遍增约术实际上是现代数值计算中的Ricklardsoll外推法:他用数值分析方法获得了弧矢之间的无穷幂级数展开式,开启了和算圆理研究的新纪元;在中国象数学思想指导下,他提出所谓“三要”和“两仪”
《数学文化小丛书:从多面体到水立方》简单介绍了证明欧拉公式的一个变体,同时也给出了笛卡儿证明方法的基本思想、与拓扑学的起源和一些重要思想之间的关系;还介绍了除正多面体以外的重要的多面体——阿基米德多面体,它们在自然界的表现。
本书从数学的创造性思维本质出发,论述了数学发现和数学解题的一般性规律、原理和方法,重点阐述了数学解题的思维过程、策略和思路等。
《数学之英文写作》旨在帮助需要从事英文写作与演讲的科研人员和大学生、研究生了解关于科技英语写作的方方面面,尤其是数学文章写作的基本常识和注意事项。写作中参考了西方学者关于英文数学写作的观点,并揉合了作者自己的观念、认识及经验。阅读《数学之英文写作》对初学者尤其会有帮助。全书内容包括:数学文章的结构,数学文章的词句,怎样
《原则与策略——从波利亚解题表谈起》是一本既有深厚的理论基础,又富有文采和启发性、可读性的关于数学思维的参考书。对中学教学和训练学生形象思维、逻辑思维等方面能力都大有益处的参考书。是对中学数学思维过程的整体审视与具体分析。 《原则与策略——从波利亚解题表谈起》适合中学教师和中学生参考阅读。
《普通高等教育基础课规划教材:数学文化(第2版)》的特点有三:一是由大家熟知的许多数学史实来阐明数学的思想、方法与文化意义,特别是介绍了解析几何、微积分、概率论与数理统计、线性代数等大学生必修的大学数学内容的思想、方法与文化影响,以期加深对这些经典数学内容的理解;二是在众多数学事实的基础上,把它升华为数学哲学理论上的分
《21世纪高等职业院校通识教育规划教材:经济应用数学基础及数学文化》是按照我国高等职业教育对人才的要求,结合课程改革思路和编者多年教学经验编写的。本书共分8章,主要介绍函数与极限,导数与微分及其应用,积分及其应用,多元函数微分及其经济应用,线性规划数学模型,投入产出数学模型,决策与数理统计方法,数学文化,MATLAB软
1893年夏天,在美国芝加哥召开的国际数学大会上,19世纪最著名的数学家之一F.Klein在美国西北大学作了为期两周的埃文斯顿学术报告会演讲。这本《Klein数学讲座》由他报告的讲义组成。在这两周的报告中,Klein给出了他所认为的在那个时期非常重要主题的个人观点,演讲强烈地影响了美国数学的兴起。这些观点在今天不论是对
《数学·人类智慧的源泉:数学符号一本通》用通俗、生动的语言,翔实介绍数学符号的来历和发展,以及人们前赴后继地发现这些数学知识的曲折,这些为数学宝库增色添彩的猜想和发现,能够激发青少年读者学习数学的兴趣,开启潜在的创新意识。
教学是一门博六精深的科学,我们的生话与它息息相关。在曹外香主编的《被虐待的思维》这本书中,你会发现数学并不是你想象约那么枯燥,它也有和蔼有趣的一面。快速必算让你快速提高运算速度.在考试中得心应手;包含在中国古代趣题、大师的谜题中的奥教专题,能让你在轻松的阅读中提高教学能力;趣味游戏让你在快乐的玩喜中学会教学。